90.23.1 problem 5

Internal problem ID [25354]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 365
Problem number : 5
Date solved : Friday, October 03, 2025 at 12:00:34 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y&=0 \end{align*}

Using Laplace method

Maple. Time used: 0.044 (sec). Leaf size: 19
ode:=t*diff(diff(y(t),t),t)+(t-1)*diff(y(t),t)-y(t) = 0; 
dsolve(ode,y(t),method='laplace');
 
\[ y = \left (y \left (0\right )+c_1 \right ) {\mathrm e}^{-t}+c_1 \left (t -1\right ) \]
Mathematica. Time used: 0.027 (sec). Leaf size: 20
ode=t*D[y[t],{t,2}]+(t-1)*D[y[t],t]-y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 e^{-t}+c_2 (t-1) \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), (t, 2)) + (t - 1)*Derivative(y(t), t) - y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False