Internal
problem
ID
[25358]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
365
Problem
number
:
9
Date
solved
:
Friday, October 03, 2025 at 12:00:36 AM
CAS
classification
:
[_Lienard]
Using Laplace method With initial conditions
ode:=t*diff(diff(y(t),t),t)-4*diff(y(t),t)+t*y(t) = 0; ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=t*D[y[t],{t,2}]-4*D[y[t],t]+t*y[t]==0; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*y(t) + t*Derivative(y(t), (t, 2)) - 4*Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)
ValueError : Couldnt solve for initial conditions