Internal
problem
ID
[25365]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
365
Problem
number
:
16
Date
solved
:
Friday, October 03, 2025 at 12:00:39 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using Laplace method
ode:=t*diff(diff(y(t),t),t)+(t+2)*diff(y(t),t)+y(t) = 0; dsolve(ode,y(t),method='laplace');
ode=t*D[y[t],{t,2}]+(2+t)*D[y[t],t]+y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), (t, 2)) + (t + 2)*Derivative(y(t), t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
False