Internal
problem
ID
[1385]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
5.3,
Series
Solutions
Near
an
Ordinary
Point,
Part
II.
page
269
Problem
number
:
3
Date
solved
:
Tuesday, September 30, 2025 at 04:33:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)+3*ln(x)*y(x) = 0; ic:=[y(1) = 2, D(y)(1) = 0]; dsolve([ode,op(ic)],y(x),type='series',x=1);
ode=x^2*D[y[x],{x,2}]+(1+x)*D[y[x],x]+3*Log[x]*y[x]==0; ic={y[1]==2,Derivative[1][y][1]==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + (x + 1)*Derivative(y(x), x) + 3*y(x)*log(x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)