Internal
problem
ID
[25390]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
379
Problem
number
:
9
Date
solved
:
Friday, October 03, 2025 at 12:00:51 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=t^2*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = t^4; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==t^4; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**4 + t**2*Derivative(y(t), (t, 2)) - 2*t*Derivative(y(t), t) + 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)