Internal
problem
ID
[25393]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
379
Problem
number
:
12
Date
solved
:
Friday, October 03, 2025 at 12:00:54 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = exp(2*t)/(t^2+1); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==Exp[2*t]/(1+t^2); ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(2*t)/(t**2 + 1),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (4*t**2*y(t) + t**2*Derivative(y(t), (t, 2