Internal
problem
ID
[25396]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
379
Problem
number
:
15
Date
solved
:
Friday, October 03, 2025 at 12:01:05 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=t*diff(diff(y(t),t),t)-diff(y(t),t)+4*t^3*y(t) = 4*t^5; dsolve(ode,y(t), singsol=all);
ode=t*D[y[t],{t,2}]-D[y[t],t]+4*t^3*y[t]==4*t^5; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t**5 + 4*t**3*y(t) + t*Derivative(y(t), (t, 2)) - Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -t*(-4*t**4 + 4*t**2*y(t) + Derivative(y(t), (t, 2))) + Derivati