Internal
problem
ID
[25400]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
5.
Second
Order
Linear
Differential
Equations.
Exercises
at
page
379
Problem
number
:
20
Date
solved
:
Friday, October 03, 2025 at 12:01:08 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method
ode:=diff(diff(y(t),t),t)-2*a*diff(y(t),t)+a^2*y(t) = f(t); dsolve(ode,y(t),method='laplace');
ode=D[y[t],{t,2}]-2*a*D[y[t],t]+a^2*y[t]==f[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") y = Function("y") f = Function("f") ode = Eq(a**2*y(t) - 2*a*Derivative(y(t), t) - f(t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)