Internal
problem
ID
[25402]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
379
Problem
number
:
17
(a)
Date
solved
:
Friday, October 03, 2025 at 12:01:09 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method
ode:=diff(diff(y(t),t),t)+4*y(t) = piecewise(0 <= t and t < 2,4,2 <= t and t < infinity,8*t); dsolve(ode,y(t),method='laplace');
ode=D[y[t],{t,2}]+4*y[t]==Piecewise[{{4,0<=t<2},{8*t,2<=t<Infinity}}]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((4, (t >= 0) & (t < 2)), (8*t, (t >= 2) & (t < oo))) + 4*y(t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)