Internal
problem
ID
[25415]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
425
Problem
number
:
5
Date
solved
:
Saturday, October 04, 2025 at 04:13:56 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-4*y(t) = piecewise(t < 1 and 0 <= t,12*exp(t),1 <= t,12*exp(1)); ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]-4*y[t]==Piecewise[{ {12*Exp[t], 0<=t<1}, {12*Exp[1],t>=1} }]; ic={y[0]==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((12*exp(t), (t >= 0) & (t < 1)), (12*E, t >= 1)) - 4*y(t) + Derivative(y(t), t),0) ics = {y(0): 2} dsolve(ode,func=y(t),ics=ics)