90.28.5 problem 5

Internal problem ID [25427]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 6. Discontinuous Functions and the Laplace Transform. Exercises at page 437
Problem number : 5
Date solved : Friday, October 03, 2025 at 12:01:26 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y&=\delta \left (t -\pi \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.087 (sec). Leaf size: 18
ode:=diff(diff(y(t),t),t)+4*y(t) = Dirac(t-Pi); 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = \frac {\sin \left (2 t \right ) \left (1+\operatorname {Heaviside}\left (t -\pi \right )\right )}{2} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 18
ode=D[y[t],{t,2}]+4*y[t]==DiracDelta[t-Pi]; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to (\theta (t-\pi )+1) \sin (t) \cos (t) \end{align*}
Sympy. Time used: 0.761 (sec). Leaf size: 70
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-Dirac(t - pi) + 4*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (- \frac {\int \operatorname {Dirac}{\left (t - \pi \right )} \sin {\left (2 t \right )}\, dt}{2} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} \sin {\left (2 t \right )}\, dt}{2}\right ) \cos {\left (2 t \right )} + \left (\frac {\int \operatorname {Dirac}{\left (t - \pi \right )} \cos {\left (2 t \right )}\, dt}{2} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - \pi \right )} \cos {\left (2 t \right )}\, dt}{2} + \frac {1}{2}\right ) \sin {\left (2 t \right )} \]