Internal
problem
ID
[25431]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
437
Problem
number
:
9
Date
solved
:
Friday, October 03, 2025 at 12:01:28 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+4*y(t) = 3*Dirac(t-1); ic:=[y(0) = -1, D(y)(0) = 3]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*D[y[t],t]+4*y[t]==3*DiracDelta[t-1]; ic={y[0]==-1,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*Dirac(t - 1) + 4*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): 3} dsolve(ode,func=y(t),ics=ics)