90.30.2 problem 2

Internal problem ID [25442]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 7. Power series methods. Exercises at page 517
Problem number : 2
Date solved : Friday, October 03, 2025 at 12:01:34 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 57
Order:=6; 
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t),type='series',t=0);
 
\[ y = \left (1-\frac {1}{2} t^{2}-\frac {1}{3} t^{3}-\frac {1}{8} t^{4}-\frac {1}{30} t^{5}\right ) y \left (0\right )+\left (t +t^{2}+\frac {1}{2} t^{3}+\frac {1}{6} t^{4}+\frac {1}{24} t^{5}\right ) y^{\prime }\left (0\right )+O\left (t^{6}\right ) \]
Mathematica. Time used: 0.0 (sec). Leaf size: 66
ode=D[y[t],{t,2}]-2*D[y[t],t]+y[t]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
 
\[ y(t)\to c_1 \left (-\frac {t^5}{30}-\frac {t^4}{8}-\frac {t^3}{3}-\frac {t^2}{2}+1\right )+c_2 \left (\frac {t^5}{24}+\frac {t^4}{6}+\frac {t^3}{2}+t^2+t\right ) \]
Sympy. Time used: 0.224 (sec). Leaf size: 41
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (t \right )} = C_{2} \left (- \frac {t^{4}}{8} - \frac {t^{3}}{3} - \frac {t^{2}}{2} + 1\right ) + C_{1} t \left (\frac {t^{3}}{6} + \frac {t^{2}}{2} + t + 1\right ) + O\left (t^{6}\right ) \]