Internal
problem
ID
[25450]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
7.
Power
series
methods.
Exercises
at
page
517
Problem
number
:
10
Date
solved
:
Friday, October 03, 2025 at 12:01:38 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(-t^2+1)*diff(diff(y(t),t),t)-6*t*diff(y(t),t)-4*y(t) = 0; dsolve(ode,y(t),type='series',t=0);
ode=(1-t^2)*D[y[t],{t,2}]-6*t*D[y[t],t]-4*y[t]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-6*t*Derivative(y(t), t) + (1 - t**2)*Derivative(y(t), (t, 2)) - 4*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)