Internal
problem
ID
[25493]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
9.
Linear
Systems
of
Differential
Equations.
Exercises
at
page
677
Problem
number
:
9
Date
solved
:
Friday, October 03, 2025 at 12:02:06 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = 4*y__2(t), diff(y__2(t),t) = -y__1(t), diff(y__3(t),t) = y__1(t)+4*y__2(t)-y__3(t)]; ic:=[y__1(0) = 2, y__2(0) = 1, y__3(0) = 2]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]==4*y2[t], D[y2[t],t]==-y1[t], D[y3[t],t]==y1[t]+4*y2[t]-y3[t]}; ic={y1[0]==2,y2[0]==1,y3[0]==2}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") y3 = Function("y3") ode=[Eq(-4*y2(t) + Derivative(y1(t), t),0),Eq(y1(t) + Derivative(y2(t), t),0),Eq(-y1(t) - 4*y2(t) + y3(t) + Derivative(y3(t), t),0)] ics = {y1(0): 2, y2(0): 1, y3(0): 2} dsolve(ode,func=[y1(t),y2(t),y3(t)],ics=ics)