Internal
problem
ID
[25501]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
9.
Linear
Systems
of
Differential
Equations.
Exercises
at
page
677
Problem
number
:
17
Date
solved
:
Friday, October 03, 2025 at 12:02:11 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = y__2(t)+y__3(t)+exp(2*t), diff(y__2(t),t) = y__1(t)+y__2(t)-y__3(t)+exp(2*t), diff(y__3(t),t) = -2*y__1(t)+y__2(t)+3*y__3(t)-exp(2*t)]; ic:=[y__1(0) = 0, y__2(0) = 0, y__3(0) = 0]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]==y2[t]+y3[t]+Exp[2*t], D[y2[t],t]==y1[t]+y2[t]-y3[t]+Exp[2*t],D[y3[t],t]==-2*y1[t]+y2[t]+3*y3[t]-Exp[2*t]}; ic={y1[0]==0,y2[0]==0,y3[0]==0}; DSolve[{ode,ic},{y1[t],y2[t],y3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") y3 = Function("y3") ode=[Eq(-y2(t) - y3(t) - exp(2*t) + Derivative(y1(t), t),0),Eq(-y1(t) - y2(t) + y3(t) - exp(2*t) + Derivative(y2(t), t),0),Eq(2*y1(t) - y2(t) - 3*y3(t) + exp(2*t) + Derivative(y3(t), t),0)] ics = {y1(0): 0, y2(0): 0, y3(0): 0} dsolve(ode,func=[y1(t),y2(t),y3(t)],ics=ics)