Internal
problem
ID
[25509]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
9.
Linear
Systems
of
Differential
Equations.
Exercises
at
page
719
Problem
number
:
8
Date
solved
:
Sunday, October 12, 2025 at 05:55:41 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = 1/t*y__1(t)+1, diff(y__2(t),t) = 1/t*y__2(t)+t]; ic:=[y__1(1) = 1, y__2(1) = 2]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]==1/t*y1[t]+1, D[y2[t],t]==1/t*y2[t]+t}; ic={y1[1]==1,y2[1]==2}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") ode=[Eq(Derivative(y1(t), t) - 1 - y1(t)/t,0),Eq(-t + Derivative(y2(t), t) - y2(t)/t,0)] ics = {y1(1): 1, y2(1): 2} dsolve(ode,func=[y1(t),y2(t)],ics=ics)
NotAlgebraic : Integral(1, (t_, 0)) does not seem to be an algebraic element