Internal
problem
ID
[25511]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
9.
Linear
Systems
of
Differential
Equations.
Exercises
at
page
719
Problem
number
:
10
Date
solved
:
Sunday, October 12, 2025 at 05:55:41 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = 4*t/(t^2+1)*y__1(t)+6*y__2(t)*t/(t^2+1)-3*t, diff(y__2(t),t) = -2*t/(t^2+1)*y__1(t)-4*y__2(t)*t/(t^2+1)+t]; ic:=[y__1(1) = 1, y__2(1) = -1]; dsolve([ode,op(ic)]);
ode={D[y1[t],t]==2*y1[t]*2*t/(1+t^2)+3*y2[t]*2*t/(1+t^2)-3*t, D[y2[t],t]==-y1[t]*2*t/(1+t^2)-2*y2[t]*2*t/(1+t^2)+t}; ic={y1[1]==1,y2[1]==-1}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y1 = Function("y1") y2 = Function("y2") ode=[Eq(3*t - 4*t*y1(t)/(t**2 + 1) - 6*t*y2(t)/(t**2 + 1) + Derivative(y1(t), t),0),Eq(-t + 2*t*y1(t)/(t**2 + 1) + 4*t*y2(t)/(t**2 + 1) + Derivative(y2(t), t),0)] ics = {y1(1): 1, y2(1): -1} dsolve(ode,func=[y1(t),y2(t)],ics=ics)