5.2.3 problem 10

Internal problem ID [1474]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 4.2, Higher order linear differential equations. Constant coefficients. page 180
Problem number : 10
Date solved : Tuesday, September 30, 2025 at 04:34:28 AM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+4*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 x +c_3 \right ) {\mathrm e}^{2 x}+c_2 x +c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 22
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+4*D[y[x],{x,3}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (x (c_4 x+c_3)+c_2)+c_1 \end{align*}
Sympy. Time used: 0.039 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{4} e^{2 x} + x \left (C_{2} + C_{3} e^{2 x}\right ) \]