6.2.32 problem 32

Internal problem ID [1568]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Linear first order. Section 2.1 Page 41
Problem number : 32
Date solved : Tuesday, September 30, 2025 at 04:36:41 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }-2 y&=-x^{2} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 14
ode:=x*diff(y(x),x)-2*y(x) = -x^2; 
ic:=[y(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \left (-\ln \left (x \right )+1\right ) x^{2} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 14
ode=x*D[y[x],x]-2*y[x]==-x^2; 
ic=y[1]==1; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x^2 (\log (x)-1) \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + x*Derivative(y(x), x) - 2*y(x),0) 
ics = {y(1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (1 - \log {\left (x \right )}\right ) \]