6.4.7 problem 7

Internal problem ID [1614]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlinear Equations. Section 2.3 Page 60
Problem number : 7
Date solved : Tuesday, September 30, 2025 at 04:40:07 AM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\ln \left (1+x^{2}+y^{2}\right ) \end{align*}
Maple
ode:=diff(y(x),x) = ln(1+x^2+y(x)^2); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==Log[1+x^2+y[x]^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-log(x**2 + y(x)**2 + 1) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -log(x**2 + y(x)**2 + 1) + Derivative(y(x), x) cannot be solved by the lie group method