6.4.15 problem 18

Internal problem ID [1622]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlinear Equations. Section 2.3 Page 60
Problem number : 18
Date solved : Tuesday, September 30, 2025 at 04:40:24 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=3 x \left (y-1\right )^{{1}/{3}} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 5
ode:=diff(y(x),x) = 3*x*(y(x)-1)^(1/3); 
ic:=[y(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 1 \]
Mathematica. Time used: 0.171 (sec). Leaf size: 19
ode=D[y[x],x]==3*x*(y[x]-1)^(1/3); 
ic=y[0]==1; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 1\\ y(x)&\to \left (x^2\right )^{3/2}+1 \end{align*}
Sympy. Time used: 0.840 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*(y(x) - 1)**(1/3) + Derivative(y(x), x),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x^{2} \sqrt {x^{2}} + 1, \ y{\left (x \right )} = x^{2} \sqrt {x^{2}} + 1\right ] \]