6.4.17 problem 20(a)

Internal problem ID [1624]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Existence and Uniqueness of Solutions of Nonlinear Equations. Section 2.3 Page 60
Problem number : 20(a)
Date solved : Tuesday, September 30, 2025 at 04:40:38 AM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=3 x \left (y-1\right )^{{1}/{3}} \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=-7 \\ \end{align*}
Maple. Time used: 0.298 (sec). Leaf size: 18
ode:=diff(y(x),x) = 3*x*(y(x)-1)^(1/3); 
ic:=[y(3) = -7]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 1+\left (-11+2 i \sqrt {3}+x^{2}\right )^{{3}/{2}} \]
Mathematica. Time used: 0.082 (sec). Leaf size: 49
ode=D[y[x],x]==3*x*(y[x]-1)^(1/3); 
ic=y[3]==-7; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 1+\left (x^2-2 i \sqrt {3}-11\right )^{3/2}\\ y(x)&\to 1+\left (x^2+2 i \sqrt {3}-11\right )^{3/2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*(y(x) - 1)**(1/3) + Derivative(y(x), x),0) 
ics = {y(3): -7} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : Initial conditions produced too many solutions for constants