Internal
problem
ID
[1654]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
27
Date
solved
:
Tuesday, September 30, 2025 at 04:41:47 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=x*y(x)*diff(y(x),x) = 3*x^2+4*y(x)^2; ic:=[y(1) = 3^(1/2)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*y[x]*D[y[x],x]==3*x^2+4*y[x]^2; ic=y[1]==Sqrt[3]; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x**2 + x*y(x)*Derivative(y(x), x) - 4*y(x)**2,0) ics = {y(1): sqrt(3)} dsolve(ode,func=y(x),ics=ics)