6.5.39 problem 36(a)

Internal problem ID [1663]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Transformation of Nonlinear Equations into Separable Equations. Section 2.4 Page 68
Problem number : 36(a)
Date solved : Tuesday, September 30, 2025 at 04:47:30 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x y y^{\prime }&=x^{2}-x y+y^{2} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 19
ode:=x*y(x)*diff(y(x),x) = x^2-x*y(x)+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (\operatorname {LambertW}\left (\frac {{\mathrm e}^{-c_1 -1}}{x}\right )+1\right ) \]
Mathematica. Time used: 1.084 (sec). Leaf size: 25
ode=x*y[x]*D[y[x],x]==x^2-x*y[x]+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (1+W\left (\frac {e^{-1+c_1}}{x}\right )\right )\\ y(x)&\to x \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + x*y(x)*Derivative(y(x), x) + x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded