6.5.46 problem 45

Internal problem ID [1670]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Transformation of Nonlinear Equations into Separable Equations. Section 2.4 Page 68
Problem number : 45
Date solved : Tuesday, September 30, 2025 at 04:50:44 AM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} x y y^{\prime }&=3 x^{6}+6 y^{2} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 34
ode:=x*y(x)*diff(y(x),x) = 3*x^6+6*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {c_1 \,x^{6}-1}\, x^{3} \\ y &= -\sqrt {c_1 \,x^{6}-1}\, x^{3} \\ \end{align*}
Mathematica. Time used: 0.249 (sec). Leaf size: 42
ode=x*y[x]*D[y[x],x]==3*x^6+6*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x^3 \sqrt {-1+c_1 x^6}\\ y(x)&\to x^3 \sqrt {-1+c_1 x^6} \end{align*}
Sympy. Time used: 0.247 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**6 + x*y(x)*Derivative(y(x), x) - 6*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x^{3} \sqrt {C_{1} x^{6} - 1}, \ y{\left (x \right )} = x^{3} \sqrt {C_{1} x^{6} - 1}\right ] \]