Internal
problem
ID
[1675]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
50
Date
solved
:
Tuesday, September 30, 2025 at 04:58:46 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=2*x*(y(x)+2*x^(1/2))*diff(y(x),x) = (y(x)+x^(1/2))^2; dsolve(ode,y(x), singsol=all);
ode=2*x*(y[x]+2*Sqrt[x])*D[y[x],x]==(y[x]+Sqrt[x])^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*(2*sqrt(x) + y(x))*Derivative(y(x), x) - (sqrt(x) + y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)