Internal
problem
ID
[1678]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
53
Date
solved
:
Tuesday, September 30, 2025 at 04:58:59 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=diff(y(x),x)+3*y(x)/x = (3*x^4*y(x)^2+10*x^2*y(x)+6)/x^3/(2*x^2*y(x)+5); ic:=[y(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]+3/x*y[x]==(3*x^4*y[x]^2+10*x^2*y[x]+6)/(x^3*(2*x^2*y[x]+5)); ic=y[1]==1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + 3*y(x)/x - (3*x**4*y(x)**2 + 10*x**2*y(x) + 6)/(x**3*(2*x**2*y(x) + 5)),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)