6.8.10 problem 13

Internal problem ID [1746]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.1 Homogeneous linear equations. Page 203
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 05:18:56 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{2}+c_2}{x} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{x}+c_2 x \end{align*}
Sympy. Time used: 0.114 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x \]