Internal
problem
ID
[1757]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
1
Date
solved
:
Tuesday, September 30, 2025 at 05:19:06 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=(2*x+1)*diff(diff(y(x),x),x)-2*diff(y(x),x)-(2*x+3)*y(x) = (2*x+1)^2; dsolve(ode,y(x), singsol=all);
ode=(2*x+1)*D[y[x],{x,2}]-2*D[y[x],x]-(2*x+3)*y[x]==(2*x+1)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(2*x + 1)**2 + (2*x + 1)*Derivative(y(x), (x, 2)) - (2*x + 3)*y(x) - 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*x**2 + x*y(x) - x*Derivative(y(x), (x, 2)) + 2*x + 3*y(x)/2 + Derivative(y(x), x) - Derivative(y(x), (x, 2))/2 + 1/2 cannot be solved by the factorable group method