Internal
problem
ID
[1766]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
10
Date
solved
:
Tuesday, September 30, 2025 at 05:19:10 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=x^2*diff(diff(y(x),x),x)+2*x*(x-1)*diff(y(x),x)+(x^2-2*x+2)*y(x) = x^3*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*(x-1)*D[y[x],x]+(x^2-2*x+2)*y[x]==x^3*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*exp(2*x) + x**2*Derivative(y(x), (x, 2)) + 2*x*(x - 1)*Derivative(y(x), x) + (x**2 - 2*x + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3*exp(2*x) - x**2*y(x) - x**2*Derivative(y(x), (x, 2)) + 2*x*y(x) - 2*y(x))/(2*x*(x - 1)) cannot be solved by the factorable group method