Internal
problem
ID
[1768]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
12
Date
solved
:
Tuesday, September 30, 2025 at 05:19:11 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
ode:=(1-2*x)*diff(diff(y(x),x),x)+2*diff(y(x),x)+(2*x-3)*y(x) = (4*x^2-4*x+1)*exp(x); dsolve(ode,y(x), singsol=all);
ode=(1-2*x)*D[y[x],{x,2}]+2*D[y[x],x]+(2*x-3)*y[x]==(1-4*x+4*x^2)*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - 2*x)*Derivative(y(x), (x, 2)) + (2*x - 3)*y(x) - (4*x**2 - 4*x + 1)*exp(x) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*x**2*exp(x) + x*y(x) + 2*x*exp(x) - x*Derivative(y(x), (x, 2)) - 3*y(x)/2 - exp(x)/2 + Derivative(y(x), x) + Derivative(y(x), (x, 2))/2 cannot be solved by the factorable group method