Internal
problem
ID
[1787]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
31
Date
solved
:
Tuesday, September 30, 2025 at 05:19:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = 4*x^4; ic:=[y(-1) = 7, D(y)(-1) = -8]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x]==4*x^2; ic={y[-1]==7,Derivative[1][y][-1]==8}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-4*x**4 + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 4*y(x),0) ics = {y(-1): 7, Subs(Derivative(y(x), x), x, -1): -8} dsolve(ode,func=y(x),ics=ics)