Internal
problem
ID
[1789]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
33
Date
solved
:
Tuesday, September 30, 2025 at 05:19:20 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
With initial conditions
ode:=(1+x)^2*diff(diff(y(x),x),x)-2*(1+x)*diff(y(x),x)-(x^2+2*x-1)*y(x) = (1+x)^3*exp(x); ic:=[y(0) = 1, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x+1)^2*D[y[x],{x,2}]-2*(x+1)*x*D[y[x],x]-(x^2+2*x-1)*y[x]==(x+1)^3*Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + 1)**3*exp(x) + (x + 1)**2*Derivative(y(x), (x, 2)) - (2*x + 2)*Derivative(y(x), x) - (x**2 + 2*x - 1)*y(x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*exp(x) - x**2*y(x) - 3*x**2*exp(x) + x**2*Derivative(y(x), (x, 2)) - 2*x*y(x) - 3*x*exp(x) + 2*x*Derivative(y(x), (x, 2)) + y(x) - exp(x) + Derivative(y(x), (x, 2)))/(2*(x + 1)) cannot be solved by the factorable group method