Internal
problem
ID
[1791]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
35
Date
solved
:
Tuesday, September 30, 2025 at 05:19:22 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
Using reduction of order method given that one solution is
With initial conditions
ode:=(x^2-4)*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = x+2; ic:=[y(0) = -1/3, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x^2-4)*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==x+2; ic={y[1]==5/4,Derivative[1][y][1]==3/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) - x + (x**2 - 4)*Derivative(y(x), (x, 2)) + 2*y(x) - 2,0) ics = {y(0): -1/3, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(-x*Derivative(y(x), (x, 2)) + 1) - 2*y(x) + 4*Derivative(y(x), (x, 2)) + 2)/(4*x) cannot be solved by the factorable group method