Internal
problem
ID
[1806]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
2
Date
solved
:
Tuesday, September 30, 2025 at 05:19:43 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+4*y(x) = sin(2*x)*sec(2*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*y[x]==Sin[2*x]*Sec[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) - sin(2*x)/cos(2*x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)