Internal
problem
ID
[1824]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 05:20:06 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=4*x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(-16*x^2+3)*y(x) = 8*x^(5/2); dsolve(ode,y(x), singsol=all);
ode=4*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+(3-16*x^2)*y[x]==8*x^(5/2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**(5/2) + 4*x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + (3 - 16*x**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*x**(3/2) + 4*x*y(x) - x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - 3*y(x)/(4*x) cannot be solved by the factorable group method