Internal
problem
ID
[1827]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
23
Date
solved
:
Tuesday, September 30, 2025 at 05:20:09 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-2*x*(1+x)*diff(y(x),x)+(x^2+2*x+2)*y(x) = x^3*exp(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+(x^2+2*x+2)*y[x]==x^3*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*exp(x) + x**2*Derivative(y(x), (x, 2)) - 2*x*(x + 1)*Derivative(y(x), x) + (x**2 + 2*x + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*exp(x) + x**2*y(x) + x**2*Derivative(y(x), (x, 2)) + 2*x*y(x) + 2*y(x))/(2*x*(x + 1)) cannot be solved by the factorable group method