Internal
problem
ID
[1836]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
32
Date
solved
:
Tuesday, September 30, 2025 at 05:20:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=(x-1)^2*diff(diff(y(x),x),x)-(x^2-1)*diff(y(x),x)+(1+x)*y(x) = (x-1)^3*exp(x); ic:=[y(0) = 4, D(y)(0) = -6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x-1)^2*D[y[x],{x,2}]-(x^2-1)*D[y[x],x]+(x+1)*y[x]==(x-1)^3*Exp[x]; ic={y[0]==4,Derivative[1][y][0] ==-6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x - 1)**3*exp(x) + (x - 1)**2*Derivative(y(x), (x, 2)) + (x + 1)*y(x) - (x**2 - 1)*Derivative(y(x), x),0) ics = {y(0): 4, Subs(Derivative(y(x), x), x, 0): -6} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*exp(x) + 3*x**2*exp(x) + x**2*Derivative(y(x), (x, 2)) + x*y(x) - 3*x*exp(x) - 2*x*Derivative(y(x), (x, 2)) + y(x) + exp(x) + Derivative(y(x), (x, 2)))/(x**2 - 1) cannot be solved by the factorable group method