Internal
problem
ID
[1839]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
35
Date
solved
:
Tuesday, September 30, 2025 at 05:20:20 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=(1+x)*(2*x+3)*diff(diff(y(x),x),x)+2*(x+2)*diff(y(x),x)-2*y(x) = (2*x+3)^2; ic:=[y(0) = 0, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x+1)*(2*x+3)*D[y[x],{x,2}]+2*(x+2)*D[y[x],x]-2*y[x]==(2*x+3)^2; ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)*(2*x + 3)*Derivative(y(x), (x, 2)) - (2*x + 3)**2 + (2*x + 4)*Derivative(y(x), x) - 2*y(x),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**2*Derivative(y(x), (x, 2)) + 4*x**2 - 5*x*Derivative(y(x), (x, 2)) + 12*x + 2*y(x) - 3*Derivative(y(x), (x, 2)) + 9)/(2*(x + 2)) cannot be solved by the factorable group method