6.12.12 problem 12

Internal problem ID [1866]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 12
Date solved : Tuesday, September 30, 2025 at 05:20:42 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }-9 x y^{\prime }-6 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 20
Order:=6; 
ode:=(2*x^2+1)*diff(diff(y(x),x),x)-9*x*diff(y(x),x)-6*y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = -1]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1-x +3 x^{2}-\frac {5}{2} x^{3}+5 x^{4}-\frac {21}{8} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 32
ode=(1+2*x^2)*D[y[x],{x,2}]-9*x*D[y[x],x]-6*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==-1}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {21 x^5}{8}+5 x^4-\frac {5 x^3}{2}+3 x^2-x+1 \]
Sympy. Time used: 0.275 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*x*Derivative(y(x), x) + (2*x**2 + 1)*Derivative(y(x), (x, 2)) - 6*y(x),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (5 x^{4} + 3 x^{2} + 1\right ) + C_{1} x \left (\frac {5 x^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]