Internal
problem
ID
[1871]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.2
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
I.
Exercises
7.2.
Page
329
Problem
number
:
19
Date
solved
:
Tuesday, September 30, 2025 at 05:20:45 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(2*x^2-8*x+11)*diff(diff(y(x),x),x)-16*(x-2)*diff(y(x),x)+36*y(x) = 0; dsolve(ode,y(x),type='series',x=2);
ode=(11-8*x+2*x^2)*D[y[x],{x,2}]-16*(x-2)*D[y[x],x]+36*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,2,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((32 - 16*x)*Derivative(y(x), x) + (2*x**2 - 8*x + 11)*Derivative(y(x), (x, 2)) + 36*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=2,n=6)