6.12.37 problem 44

Internal problem ID [1891]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I. Exercises 7.2. Page 329
Problem number : 44
Date solved : Tuesday, September 30, 2025 at 05:20:57 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 15
Order:=6; 
ode:=diff(diff(y(x),x),x)+x^5*diff(y(x),x)+6*x^4*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 10
ode=D[y[x],{x,2}]+x^5*D[y[x],x]+6*x^4*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 x+c_1 \]
Sympy. Time used: 0.210 (sec). Leaf size: 3
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**5*Derivative(y(x), x) + 6*x**4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = O\left (1\right ) \]