Internal
problem
ID
[1920]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.3
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
II.
Exercises
7.3.
Page
338
Problem
number
:
31(c)
Date
solved
:
Tuesday, September 30, 2025 at 05:21:18 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
Using series method with expansion around
Order:=6; ode:=(4*x^2-4*x+1)*diff(diff(y(x),x),x)-(8-16*x)*diff(y(x),x)+8*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(1-4*x+4*x^2)*D[y[x],{x,2}]-(8-16*x)*D[y[x],x]+8*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((16*x - 8)*Derivative(y(x), x) + (4*x**2 - 4*x + 1)*Derivative(y(x), (x, 2)) + 8*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)