6.13.32 problem 32

Internal problem ID [1923]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number : 32
Date solved : Tuesday, September 30, 2025 at 05:21:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 x y^{\prime }+\left (2 x^{2}+3\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=-2 \\ \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 20
Order:=6; 
ode:=diff(diff(y(x),x),x)+2*x*diff(y(x),x)+(2*x^2+3)*y(x) = 0; 
ic:=[y(0) = 1, D(y)(0) = -2]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1-2 x -\frac {3}{2} x^{2}+\frac {5}{3} x^{3}+\frac {17}{24} x^{4}-\frac {11}{20} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 36
ode=D[y[x],{x,2}]+2*x*D[y[x],x]+(3+2*x^2)*y[x]==0; 
ic={y[0]==1,Derivative[1][y][0] ==-2}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {11 x^5}{20}+\frac {17 x^4}{24}+\frac {5 x^3}{3}-\frac {3 x^2}{2}-2 x+1 \]
Sympy. Time used: 0.250 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + (2*x**2 + 3)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): -2} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = - \frac {9 x^{5} r{\left (3 \right )}}{20} + C_{2} \left (\frac {17 x^{4}}{24} - \frac {3 x^{2}}{2} + 1\right ) + C_{1} x \left (1 - \frac {x^{4}}{10}\right ) + O\left (x^{6}\right ) \]