Internal
problem
ID
[2005]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.6
THE
METHOD
OF
FROBENIUS
II.
Exercises
7.6.
Page
374
Problem
number
:
3
Date
solved
:
Tuesday, September 30, 2025 at 05:22:25 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=8; ode:=x^2*(x^2+2*x+1)*diff(diff(y(x),x),x)+x*(4*x^2+3*x+1)*diff(y(x),x)-x*(1-2*x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1+2*x+x^2)*D[y[x],{x,2}]+x*(1+3*x+4*x^2)*D[y[x],x]-x*(1-2*x)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x**2 + 2*x + 1)*Derivative(y(x), (x, 2)) - x*(1 - 2*x)*y(x) + x*(4*x**2 + 3*x + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)