6.15.43 problem 39

Internal problem ID [2041]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : 39
Date solved : Tuesday, September 30, 2025 at 05:22:54 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }+\left (12 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 36
Order:=6; 
ode:=x^2*(x^2+1)*diff(diff(y(x),x),x)+x*(8*x^2+3)*diff(y(x),x)+(12*x^2+1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {\left (c_2 \ln \left (x \right )+c_1 \right ) \left (1-\frac {3}{2} x^{2}+\frac {15}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {1}{4} x^{2}-\frac {13}{32} x^{4}+\operatorname {O}\left (x^{6}\right )\right ) c_2}{x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 71
ode=x^2*(1+x^2)*D[y[x],{x,2}]+x*(3+8*x^2)*D[y[x],x]+(1+12*x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_1 \left (\frac {15 x^4}{8}-\frac {3 x^2}{2}+1\right )}{x}+c_2 \left (\frac {\frac {x^2}{4}-\frac {13 x^4}{32}}{x}+\frac {\left (\frac {15 x^4}{8}-\frac {3 x^2}{2}+1\right ) \log (x)}{x}\right ) \]
Sympy. Time used: 0.423 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x**2 + 1)*Derivative(y(x), (x, 2)) + x*(8*x**2 + 3)*Derivative(y(x), x) + (12*x**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + O\left (x^{6}\right ) \]