6.15.59 problem 60

Internal problem ID [2057]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number : 60
Date solved : Tuesday, September 30, 2025 at 05:23:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.021 (sec). Leaf size: 29
Order:=6; 
ode:=x^2*(-x^2+2)*diff(diff(y(x),x),x)-x*(3*x^2+2)*diff(y(x),x)+(-x^2+2)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {1}{4} x^{4}\right ) x \left (\ln \left (x \right ) c_2 +c_1 \right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 46
ode=x^2*(2-x^2)*D[y[x],{x,2}]-x*(2+3*x^2)*D[y[x],x]+(2-x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \left (\frac {x^4}{4}+\frac {x^2}{2}+1\right )+c_2 x \left (\frac {x^4}{4}+\frac {x^2}{2}+1\right ) \log (x) \]
Sympy. Time used: 0.360 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(2 - x**2)*Derivative(y(x), (x, 2)) - x*(3*x**2 + 2)*Derivative(y(x), x) + (2 - x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x + O\left (x^{6}\right ) \]