6.16.10 problem 6

Internal problem ID [2072]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS III. Exercises 7.7. Page 389
Problem number : 6
Date solved : Tuesday, September 30, 2025 at 05:23:23 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x \left (2+x \right ) y^{\prime }-\left (2-3 x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.022 (sec). Leaf size: 62
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*(x+2)*diff(y(x),x)-(2-3*x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \,x^{3} \left (1-x +\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{24} x^{4}-\frac {1}{120} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (\left (-6\right ) x^{3}+6 x^{4}-3 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (12+6 x +6 x^{2}-11 x^{3}+5 x^{4}-x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{2}} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 74
ode=x^2*D[y[x],{x,2}]+x*(2+x)*D[y[x],x]-(2-3*x)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^4-3 x^3+2 x^2+2 x+4}{4 x^2}+\frac {1}{2} (x-1) x \log (x)\right )+c_2 \left (\frac {x^5}{24}-\frac {x^4}{6}+\frac {x^3}{2}-x^2+x\right ) \]
Sympy. Time used: 0.291 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(x + 2)*Derivative(y(x), x) - (2 - 3*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x \left (\frac {x^{4}}{24} - \frac {x^{3}}{6} + \frac {x^{2}}{2} - x + 1\right ) + O\left (x^{6}\right ) \]