6.16.29 problem 25

Internal problem ID [2091]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS III. Exercises 7.7. Page 389
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 05:23:47 AM
CAS classification : [_Lienard]

\begin{align*} x y^{\prime \prime }-5 y^{\prime }+x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 32
Order:=6; 
ode:=x*diff(diff(y(x),x),x)-5*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{6} \left (1-\frac {1}{16} x^{2}+\frac {1}{640} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (-86400-10800 x^{2}-1350 x^{4}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 44
ode=x*D[y[x],{x,2}]-5*D[y[x],x]+x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^4}{64}+\frac {x^2}{8}+1\right )+c_2 \left (\frac {x^{10}}{640}-\frac {x^8}{16}+x^6\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x) + x*Derivative(y(x), (x, 2)) - 5*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None